Banner ELAINE

ELAINE Lecture Series

Schedule of ELAINE Colloquia

Mon, 09.10.17: Dr. Tofail Syed, University of Limerick, Piezoelectricity in biological building blocks and potential physiological relevance

Abstract: Piezoelectric materials produces electricity when deformed and vice versa. Hierarchical biological structures such as bone, tendon, wood and silk have been known to show weak piezoelectricity when compared to technical piezoelectric polymers and ceramics. Their physiological significance is still a matter of speculation. Synthetic polypeptides have recently shown significant piezoelectricity to merit their use in technical applications. Our group has successfully predicted and quantitatively measured piezoelectricity in synthetic bone mineral hydroxyapatite and globular protein lysozyme and amino acids. In this colloquium we will discuss fundamental principles of piezoelectricity and emphasise the need for considering fundamental building blocks to understand physiological significance of piezoelectricity.

Wed, 25.10.17: Prof. Dr. Sascha Spors, University of Rostock, Open Science

Abstract: The reproducibility of results is one of the main principles of the scientific method. The irreproducibility of a wide range of scientific results has recently drawn significant attention. Besides problems in the research methods themselves, results were often not reproducible since necessary supplementary material as protocols, data and implementations were not available. Another issue is the lacking availability of data for further research by third parties. In many cases only the published results are available to other researchers. Open Science focuses on the ease of access and reproducibility of scientific results. This contribution introduces the concept of reproducibility and addresses common concerns. Best practices for Open Science in acoustics research are discussed and illustrated at examples.

Thu, 25.01.18: Dr. Lehner, TÜV SÜD Product Service, Rahmenbedingungen für die Zulassung ... (klick for details)

Thu, 25.01.18: Dr. Lehner, TÜV SÜD Product Service, Rahmenbedingungen für die Zulassung von Medizinprodukten im Zuge der neuen Medizinprodukteverordnung (MDR)

Abstract: Nach der Bekanntmachung der neuen amtlichen Fassung der Europäischen Medizinprodukte-Verordnung (Medical Device Regulation, MDR) am 05. Mai 2017 im EU-Amtsblatt trat diese am 25. Mai 2017 endgültig in Kraft. Die MDR ersetzt die beiden bestehenden Richtlinien MDD 93/42/EWG über Medizinprodukte (Medical Device Directive) sowie AIMD 90/385/EWG über aktive implantierbare Medizinprodukte (Active Implantable Medical Devices) und ist nach einer dreijährigen Übergangszeit ab dem 26. Mai 2020 verpflichtend anzuwenden.

Mit der Einführung der MDR werden die Anforderungen an den Inhalt der Technischen Dokumentation zukünftig deutlich detaillierter geregelt, auch ist der Inhalt von den Herstellern kontinuierlich zu aktualisieren. Beispielweise erhält jedes Medizinprodukt zur vereinfachten Rückverfolgbarkeit in Zukunft eine eindeutige Produktidentifizierungsnummer (UDI). Auch die Klassifizierung einiger Produkte ändert sich. So müssen eine Reihe von Implantaten, die bisher in Klasse IIb eingestuft waren, nun die Anforderungen von Klasse III Produkten erfüllen. Die MDR erfordert zudem eine strengere klinische Überwachung nach dem Inverkehrbringen der Medizinprodukte.

Wed, 28.02.18: Prof. Ma Ángeles Pérez Ansón, Zaragoza, Spain, Mechanobiology and Multiscale Modeling of Cell Proliferation and Migration

Multiscale modeling of bone mechanobiology: from cell proliferation and migration to bone remodeling simulations

María Angeles Pérez

M2BE-Multiscale in Mechanical and Biological Engineering, Aragon Institute for Engineering Research – I3A, Aragón Institute of Health Sciences –IACS, University of Zaragoza, Zaragoza, Spain

(angeles@unizar.es)

Skeletal mechanobiology aims to discover how mechanical forces modulate morphological and structural fitness of the skeletal tissues – bone, cartilage, ligament and tendon [1]. Mechanobiological models have been used to explain mechanoregulation in fracture healing, callus growth, distraction osteogeneis, bone ingrowth into porous implants and tissue engineering. The proliferation/migration of cells has been modelled by considering it to be analogous to diffusion. However, using a diffusion model to simulate cell dispersal means that proliferation and migration tend to create a smooth variation in cell density, but such a constraint is not physiological nor is it necessary if a more general random-walk model is used. Furthermore, random-walk models can simulate not only a preferred direction to migration but proliferation can also be explicitly modelled by multiplying cell numbers during dispersal, or several cell populations could be included simultaneously [2]. A random-walk model was also used to simulate proliferation, migration and differentiation of adult muscle satellite cells [3]. The model was validated with an invitro cell culture. Additionally, several examples where the random-walk model were used (mechanobiological simulations of tissue differentiation and cement infiltration within open-cell structures resembling osteoporotic bone) will be presented in this lecture.

In bone mechanobiology, bone cells respond directly or indirectly to the local strains engendered in their neighbourhood by external loading activity [4]. This process is named bone remodeling, which is the continuous turnover of bone matrix and mineral by bone resorption and formation in the adult skeleton. The mechanical environment plays an essential role in the regulation of bone remodeling in intact bone and during bone repair. During decades, a great number of numerically implemented mathematical laws have been proposed, but most of them present different problems and stability, convergence or dependence of the initial conditions [5]. Therefore, bone remodelling challenges, problematic and their applicability will be also presented in this lecture from a macroscale point of view.

Summarizing, previous computational models range from microscale to macroscale approaches. The development of a multiscale procedure can be used to deeply understand the mechanisms involved in bone mechanoregulation and/or bone diseases as osteoporosis.

REFERENCES

[1] Van der Meulen and Huiskes (2002). J Biomech, 35: 401-414

[2] Pérez and Prendergast (2007). J Biomech, 40: 2244-2253

[3] Garijo et al. (2012). J Theor Biol, 314: 1-9

[4] Mellon and Tanner (2012). Int Mater Rev 57: 235-255

[5] Garijo et al. (2014). Comput Methods Appl Mech Engrg, 271: 253-268

Fri, 16.03.18: Prof. Dr. Lars Timmermann, Marburg & Prof. Dr. Gerd Kempermann, Dresden, DBS and adult neurogenesis (klick for details)

16.3.2018: Prof. Dr. Lars Timmermann, Marburg and Prof. Dr. Gerd Kempermann, Dresden – DBS and adult neurogenesis - CRC 1270 ELAINE supported session as part of the 2018 Scientific meeting of the MDS Non-Motor PD Study Group; Universitätsplatz 1, free meeting registration for CRC members through the IRTG office, see https://ctnr.med.uni-rostock.de/parkinson2018-rostock/

Wed, 27.06.18: Two talks (klick for details): Prof. Dr. Volker Mehrmann, TU Berlin // Prof. Karin Wårdell PhD, Linköping University

Two talks:

Prof. Dr. Volker Mehrmann, TU Berlin, Modelling, Simulation and Control of Constrained Multi-Physics Systems

Prof. Karin Wårdell PhD, Linköping University, Biomedical engineering